The activity and copy number of mitochondrial DNA in ovine oocytes throughout oogenesis in vivo and during oocyte maturation in vitro

نویسندگان

  • Matthew Cotterill
  • Sarah E. Harris
  • Esther Collado Fernandez
  • Jianping Lu
  • John D. Huntriss
  • Bruce K. Campbell
  • Helen M. Picton
چکیده

Mitochondria are responsible for the production of ATP, which drives cellular metabolic and biosynthetic processes. This is the first study to quantify the mtDNA copy number across all stages of oogenesis in a large monovulatory species, it includes assessment of the activity of mitochondria in germinal vesicle (GV) and metaphase II (MII) oocytes through JC1 staining. Primordial to early antral follicles (n = 249) were isolated from the sheep ovarian cortex following digestion at 37°C for 1 h and all oocytes were disaggregated from their somatic cells. Germinal vesicle oocytes (n = 133) were aspirated from 3- to 5-mm diameter antral follicles, and mature MII oocytes (n = 71) were generated following in vitro maturation (IVM). The mtDNA copy number in each oocyte was quantified using real-time PCR and showed a progressive, but variable increase in the amount of mtDNA in oocytes from primordial follicles (605 ± 205, n = 8) to mature MII oocytes (744 633 ± 115 799, n = 13; P < 0.05). Mitochondrial activity (P > 0.05) was not altered during meiotic progression from GV to MII during IVM. The observed increase in the mtDNA copy number across oogenesis reflects the changing ATP demands needed to orchestrate cytoskeletal and cytoplasmic reorganization during oocyte growth and maturation and the need to fuel the resumption of meiosis in mature oocytes following the pre-ovulatory gonadotrophin surge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte

Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...

متن کامل

P-30: The Investigation of Transcript Expression Level of Mitochondrial Transcription Factor A (TFAM) during In Vitro Maturation (IVM) in Single Human Oocytes

Background In vitro maturation (IVM) of human oocytes has acquired increasing attention in infertility treatment with great promise. This technique is an alternative conventional in vitro fertilization-embryo transfer (IVF-ET), and can be reduced the side effects of gonadotropin stimulation such as ovarian hyperstimulation (OHSS). Oocyte maturation is a complex process including cytoplasmic and...

متن کامل

P-90: Effect of Phosphodiesterase Type3 Inhibitor, Cilostamide, on The Developmental Competence of Ovine OocytesIsolated by Glucose 6-Phosphate Dehydrogenase Activity

Background: The developmental competence of oocytes matured in vitro (IVM) is yet far below than in vivo counterparts. Recent studies suggest that the asynchrony between nuclear/cytoplasmic maturation and the initial low/heterogeneous quality of oocytes are the most important factors affecting IVM success. We investigated whether selection of growing oocytes (based on their glucose 6- phosphate...

متن کامل

P-106: Effect of Cilostamide on Meiotic Arrestof Ovine Oocytes

Background: in vitro maturation (IVM) of oocytes has increasing potential applications in assisted reproductive technology (ART), during which germinal vesicle (GV) oocytes cultured in vitro to produce mature (MII arrested) ones. Although functional, IVM oocytes have low developmental competence compared to in vivo matured oocytes; possibly because IVM comprises asynchrony between nuclear and c...

متن کامل

P-109: Using SMAD2/3 Inhibitor to Investigate the Importance of GDF9 Signaling on Ovine Cumulus Expansion and Subsequent Embryonic Development

Background: Oocyte in vitro maturation success rate is still low in compareision to oocyte in vivo maturation. Thus prediction and improvement of oocyte competency are two critical issues in assisted reproductive technology. New insights into oocyte-cumulus cell regulatory loop may assist our optimization of in vitro maturation technique. Maturation and developmental competency of cumulus oocyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2013